
5 LYAPUNOV STABILITY

The concept of stability according to Lyapunov has found many applications in control
systems; in fact the whole theory of dynamical systems is based, to a great extent, on
Lyapunov’s methods.

5.1 Lyapunov Functions

Consider the nonlinear system
ẋ = f(x) .

Let an equilibrium point of the system be x,

f(x) = 0 .

We say that x is stable in the sense of Lyapunov if there exists a positive quantity ε such
that for every δ = δ(ε) we have

|x(t0) − x| < δ =⇒ |x(t) − x| < ε ,

for all t > t0. We say that x is asymptotically stable if it is stable and,

|x(t) − x| → 0 as t → ∞ .

We cal x unstable if it is not stable.

The question, of course, is: How do we determine stability or instability of x? Lyapunov
introduced two main methods:

The first is called Lyapunov’s first or indirect method: we have already seen it as the
linearization technique. Start with a nonlinear system

ẋ = f(x) .

Expand in Taylor series around x (we also redefine x → x − x),

ẋ = Ax + g(x) ,

where

A =
∂f

∂x

∣∣∣∣∣
x

,

is the Jacobian matrix of f(x) evaluated at x, and g(x) contains the higher order terms; i.e.,

lim
|x|→0

|g(x)|
|x| = 0 .

Then, the nonlinear system ẋ = f(x) is asymptotically stable if and only if the linear system
ẋ = Ax is; i.e., if all eigenvalues of A have negative real parts. This method is very popular
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because it is easy to apply and it works well for most systems, all we need to do is to be able
to evaluate partial derivatives. One disadvantage of the method is that if some eigenvalues of
A are zero and the rest have negative real parts, then we cannot draw any conclusions on the
nonlinear system, the equilibrium x can be either stable or unstable. The major drawback of
the method, however, is that since it involves linearization it is applied for situations when
the initial conditions are “close” to the equilibrium x. The method provides no indication
as to how close is “close”, this is something which may be extremely important in practical
applications.

The second method is Lyapunov’s second or direct method: this is a generalization of
Lagrange’s concept of stability of minimum potential energy. Consider the nonlinear system
ẋ = f(x). Suppose that there exists a function, called Lyapunov function, V (x) with the
following properties:

1. V (x) = 0.

2. V (x) > 0, for x �= x.

3. V̇ (x) < 0 along trajectories of ẋ = f(x).

Then, x is asymptotically stable. We can see that the method hinges on the existence of a
Lyapunov function, which is an energy–like function, zero at equilibrium, positive definite
everywhere else, and continuously decreasing as we approach the equilibrium. It should be
noted that the derivative V̇ (x) is understood as the total differential along solution curves
of ẋ = f(x); i.e.,

V̇ (x) =
∂V

∂x
· dx

dt

=
∂V

∂x
f(x)

=
∂V

∂x1
f1 +

∂V

∂x2
x2 + · · · + ∂V

∂xn
fn .

The method is very powerful and it has several advantages:

• answers questions of stability of nonlinear systems,

• can easily handle time varying systems ẋ = f(x, t),

• can determine asymptotic stability as well as plain stability,

• can determine the region of asymptotic stability or the domain of attraction of an
equilibrium.

As an example, consider an oscillator with a nonlinear spring:

ÿ + 3ẏ + y3 = 0 .
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If we were to linearize this system we would get ÿ+3ẏ = 0, which has characteristic equation
s(s + 3) = 0. The −3 characteristic root corresponds to the damping term but notice the
existence of a 0 root from the lack of a linear term in the spring restoring force. The linearized
version of the system cannot recognize the existence of a nonlinear spring term and it fails to
produce a non–zero characteristic root related to the restoring force. To see if this nonlinear
spring produces a stable or unstable system we have to resort to Lyapunov functions. The
state space form of the system is

ẋ1 = x2 ,

ẋ2 = −3x2 − x3
1 ,

with equilibrium x1 = x2 = 0. Let’s try for a Lyapunov function

V (x) =
1

2
x2

2 +
1

4
x4

1 .

We can see that V (x) > 0 for all x1, x2. The time derivative of V is

V̇ (x) =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= x3
1x2 + x2(−3x2 − x3

1)

= −3x2
2

< 0 .

It follows then that x is asymptotically stable.

The main drawback of the method is that there is no systematic way of obtaining Lya-
punov functions, this is more of an art than science. For simple second order systems (like
the one above) a good selection for a Lyapunov function is the total energy of the system
(kinetic plus potential energy). Also, it is always possible to find a Lyapunov function for a
linear system in the form

ẋ = Ax .

Choose as Lyapunov function the quadratic form

V (x) = xT Px ,

where P is a symmetric positive definite matrix. Then we have

V̇ = ẋT Px + xT P ẋ

= (Ax)T Px + xT PAx

= xT AT Px + xT PAx

= xT (AT P + PA)x

= −xT Qx ,

where we have denoted
AT P + PA = −Q .
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If the matrix Q is positive definite, then the system is asymptotically stable. Therefore, we
could pick Q = I, the identity matrix, and solve

AT P + PA = −I ,

for P and see if P is positive definite (we can do this by looking at the n principal minors
of P — Sylvester’s criterion). The equation

AT P + PA = −Q ,

is called Lyapunov’s matrix equation and its solution is easy through MATLAB by using
the command lyap. Of course one could argue that having an equation to determine a
Lyapunov function for linear systems is useless; after all for a linear system we can always
look at the eigenvalues of A to determine stability or instability. This is true, the usefulness
of Lyapunov’s matrix equation for linear systems is that it can provide an initial estimate
for a Lyapunov function for a nonlinear system in cases where this is done computationally.
Furthermore, it can be used to show stability, as we will see in the next section, of the linear
quadratic regulator design.

5.2 Examples

We present three examples here that demonstrate three important applications of Lyapunov’s
method, namely

1. How to assess the importance of nonlinear terms in stability or instability.

2. How to estimate the domain of attraction of an equilibrium point.

3. How to design a control law that guarantees global asymptotic stability; i.e., with
infinitely large domain of attraction, for a nonlinear system.

All of the above problems are very difficult, in general, and we shouldn’t think that we can
easily generalize the relatively simple examples we present here.

As our first example, suppose we have the system

ẋ1 = −x2 + ax1x
2
2 ,

ẋ2 = +x1 − bx2
1x2 ,

with a �= b. To find the equilibrium of the system we have to solve

−x2 + ax1x
2
2 = 0 ,

+x1 − bx2
1x2 = 0 .

Multiplying the first equation by x1, the second by x2 and adding we get

x2
1x

2
2(a − b) = 0 ,
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from which x1 = 0 or x2 = 0. If x1 = 0 then we see from the first equation that x2 = 0
as well, and similarly if we assume that x2 = 0. Therefore, the unique equilibrium of the
system is x1 = x2 = 0. The linearized system is[

ẋ1

ẋ2

]
=

[
0 −1
1 0

] [
x1

x2

]
.

The characteristic equation is

det

∣∣∣∣∣ −s −1
1 −s

∣∣∣∣∣ = 0 =⇒ s2 + 1 = 0 =⇒ s = ±ωi .

Since the characteristic roots are purely imaginary, we cannot draw any conclusion on the
stability of the nonlinear system. We have to resort to Lyapunov functions. Let’s try for
V (x) the sum of the “kinetic” and “potential” energy of the linear system (this doesn’t
always work of course), we get

V (x) =
1

2
x2

1 +
1

2
x2

2 .

We see that V (x) > 0 for all x1, x2. Then

V̇ (x) = x1(−x2 + ax1x
2
2) + x2(x1 − bx2

1x2)

= −x1x2 + ax2
1x

2
2 + x1x2 − bx2

1x
2
2

= (a − b)x2
1x

2
2 .

Therefore, we see that

if a < b =⇒ the system is asymptotically stable ,

if a > b =⇒ the system is unstable ,

a result which could not have been obtained by linearization.

As our second example, suppose we want to determine the stability of the origin (0, 0)
of the nonlinear system (show that this is the equilibrium of the system),

ẋ1 = −x1 + x2 + x1(x
2
1 + x2

2) ,

ẋ2 = −x1 − x2 + x2(x
2
1 + x2

2) .

The easiest way to show stability is by linearization. The linearized form of the system is[
ẋ1

ẋ2

]
=

[ −1 1
−1 −1

] [
x1

x2

]
.

The characteristic equation of the system is

s2 + 2s + 2 = 0 ,

and we can see that the system is stable, the roots of the characteristic equation have negative
real parts. Now since this result is based on linearization, it says that if the initial condition

5



is “close” to the equilibrium point (0, 0) then the solution will tend to the equilibrium as
t → ∞. To find how close is “close” we need to get an estimate of the domain of attraction.
We can do this by using Lyapunov theory. Let’s try a Lyapunov function candidate

V (x) =
1

2
x2

1 +
1

2
x2

2 .

Form

V̇ (x) = x1ẋ1 + x2ẋ2

= x1(−x1 + x2 + x3
1 + x1x

2
2) + x2(−x1 − x2 + x2x

2
1 + x3

2)

= −x2
1 + x1x2 + x4

1 + x2
1x

2
2 − x1x2 − x2

2 + x2
2x

2
1 + x4

2

= x4
1 + x4

2 + 2x2
1x

2
2 − x2

1 − x2
2

= (x2
1 + x2

2)
2 − (x2

1 + x2
2)

= (x2
1 + x2

2)(x
2
1 + x2

2 − 1) .

We can see, therefore, that stability is guaranteed if

V̇ (x) < 0 or x2
1 + x2

2 < 1 ,

which means that the domain of attraction of the equilibrium is a circular disk of radius 1.
As long as the initial conditions are inside this disk, it is guaranteed that the solution will
end up at the stable equilibrium. In case where the initial conditions lie outside the disk then
convergence is not guaranteed. It should be mentioned that the above disk is an estimate of
the domain of attraction based on the particular Lyapunov function we selected. A different
Lyapunov function could heve produced a different estimate of the domain of attraction.

As our third example, consider the motion of a space vehicle about the principal axes
of inertia. The Euler equations are

Aω̇x − (B − C)ωyωz = Tx ,

Bω̇y − (C − A)ωzωx = Ty ,

Cω̇z − (A − B)ωxωy = Tz ,

where A, B, and C denote the moments of inertia about the principal axes, ωx, ωy, and ωz

denote the angular velocities about the principal axes; and Tx, Ty, Tz are the control torques.
Assume that the space vehicle is tumbling in orbit. It is desired to stop the tumbling by
applying control torques which are assumed to be

Tx = k1Aωx ,

Ty = k2Bωy ,

Tz = k3Cωz ,

where k1, k2, k3 are the feedback gains. The unique equilibrium of the system is ωx = ωy =
ωz = 0. If we substitute the equations for the control torques we get the closed loop system

ω̇x =
B − C

A
ωyωz + k1ωx ,
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ω̇y =
C − A

B
ωzωx + k2ωy ,

ω̇z =
A − B

C
ωxωy + k3ωz .

If we linearize the system around its equilibrium we have
 ω̇x

ω̇y

ω̇z


 =


 k1 0 0

0 k2 0
0 0 k3





 ωx

ωy

ωz


 .

We can see that the eigenvalues of the closed loop matrix are the same as the feedback gains
k1, k2, k3. Therefore, for stability we want negative poles and, as a result, we select negative
gains k1, k2, k3 for the three control torques. So far we have used linear methods. What we
are really interested though is the following: will the above gain selection guarantee globally
stable operation of the system? In other words, will our control law be able to stop the
vehicle tumbling for any set of initial conditions? To see this we have to resort to Lyapunov
methods. Choose as our Lyapunov function

V (ω) =
1

2
Aω2

x +
1

2
Bω2

y +
1

2
Cω2

z ,

which is the total kinetic energy of the vehicle. We see that V is positive definite, and its
time derivative is

V̇ (ω) = k1Aω2
x + k2Bω2

y + k3Cω2
z ,

which is always negative if the gains are selected negative. Therefore, the above gain selection
guarantees stability of the nonlinear system regardless of the initial conditions.

5.3 Sliding Mode Control

As an application of Lyapunov method, consider a single input system linear in the control
effort

ẋ = f(x) + g(x)u ,

where f(x), g(x) are, in general, nonlinear functions in x. We want to design u such that
we guarantee stability of x = 0.

Choose the Lyapunov function

V (x) =
1

2
[σ(x)]2 ,

where
σ(x) = sT x .

The scalar function σ(x) can be viewed as a weighted sum of the errors in the states x. For
stability, we want the time derivative of V (x) to be negative,

V̇ (x) = σσ̇ < 0 ,
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which can be achieved if
σσ̇ = −η2|σ| ,

which means that
σ̇ = −η2sign(σ) ,

where

sign(σ) =

{
1 if σ > 0 ,
−1 if σ < 0 .

Using σ(x) = sT x, we get

σ̇ = sT ẋ = sT f(x) + sT g(x)u = −η2sign(σ) ,

and solving for u we get the control law

u = −
[
sT g(x)

]−1
sT f(x) −

[
sT g(x)

]−1
η2sign(σ) .

We can see that this control law is the sum of two terms. The first term is a nonlinear state
feedback, and the second term is a switching control law. The term η2 is an arbitrary positive
quantity, we usually select it such that V̇ is negative even in the presence of modeling errors
and disturbances.

The above control law guarantees stability of σ(x) = 0, or sT x = 0. We need to find s
such that stability of x = 0 is guaranteed. If σ(x) = 0, the system becomes

u = −
[
sT g(x)

]−1
sT f(x) ,

and
ẋ = f(x) − g(x)

[
sT g(x)

]−1
sT f(x) .

If we linearize this system,

A =
∂f

∂x

∣∣∣∣∣
0

, b = g(0) ,

we get a linear system
ẋ = Ax + bu .

Then, on σ(x) = 0 we have

ẋ = Ax − b(sT b)−1sT Ax

=
[
A − b(sT b)−1sT A

]
x .

The closed loop dynamics matrix is

AC = A − b (sT b)−1sT A︸ ︷︷ ︸
k

= A − bk .

Then
k = (sT b)−1sT A =⇒ sT bk = sT A =⇒ sT A − sT bk = 0 ,

or
sT (A − bk) = 0 =⇒ (A − bk)T s = 0 =⇒ AT

Cs = 0 =⇒ (AT
C − 0 · I) = 0 .

We see then that s is the eigenvector of AT
C that corresponds to the zero eigenvalue. The

design procedure, therefore, can be summarized as follows:
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• Pole placement of A− bk, specify one eigenvalue to be zero and the rest negative. Find
k and therefore, find AC = A − bk.

• Find s from AT
Cs = 0. Set σ = sT x.

• Implement the control law

u = −
[
sT g(x)

]−1
sT f(x) −

[
sT g(x)

]−1
η2sign(σ) ,

if we have a nonlinear system, or

u = −(sT b)−1sT Ax − (sT b)−1η2sign(σ) ,

if we have a linear system.
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